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ABSTRACT

This paper deals with the analysis of the number of tourists travelling to the Canary
Islands by means of using different seasonal statistical models. Deterministic and
stochastic seasonality is considered. For the latter case, we employ seasonal unit roots
and seasonally fractionally integrated models. As a final approach, we also employ a
model with possibly different orders of integration at zero and the seasonal
frequencies. All these models are compared in terms of their forecasting ability in an
out-of-sample experiment. The results in the paper show that a simple deterministic
model with seasonal dummy variables and AR(1) disturbances produce better results
than other approaches based on seasonal fractional and integer differentiation over
short horizons. However, increasing the time horizon, the results cannot distinguish
between the model based on seasonal dummies and another using fractional
integration at zero and the seasonal frequencies.
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1. Introduction

Canary Islands was the leading Spanish regional tourist destination during the last

winter season representing 33.6% of total tourism (see Ministerio de Industria, Turismo

y Comercio, 2006). In addition, the tourism sector represented 32.6% of the GDP in

2003 and provided 67% of the total services product. Furthermore, this activity

generated 37.3% of the total employment in that year (Gobierno de Canarias -

Consejería de Turismo, 2004), which indicates the importance of modelling tourism for

the Canary Islands.1

In the literature of tourism modelling and forecasting, we find two main

approaches, based on regression models (see for example Melenberg and van Soest,

1996; Kulendran and King, 1997), while others use pure time series analysis (e.g. Kim

1999, Lim and McAleer, 2002; Goh and Law, 2002; Gustavsson and Nordström, 2001;

and Brännäs et al., 2002 among others).

A characteristic commonly observed in many time series related with tourism is

the seasonal pattern. However, there is little consensus on how seasonality should be

treated in empirical applications on aggregate data. Since the statistical properties of

different seasonal models are distinct, the imposition of one kind when another is

present can result in serious bias or loss of information, and it is therefore useful to

establish what kind of seasonality is present in the data.

In this paper, we examine the number of tourist arrivals in the Canary Islands

using monthly data, for the time period 1992:01 to 2005:12, which generates 168

observations, and leave the last 24 (2003:01 - 2005:12) for forecasting purposes. The

plan of the paper is as follows. In Section 2, we briefly examine the different ways of

                                                
1 Some papers analyzing the tourism in the Canary Islands are Moreno (2003), Hernández (2004),
Hernández-López (2004), Díaz-Pérez et al. (2005), Garín-Muñoz (2006) and Hoti et al. (2006) among
others.
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modelling seasonality in raw time series. Section 3 presents a variety of model

specifications to describe the seasonal behaviour of tourism data in the Canary Islands.

In Section 4 we choose a single model for each specification, while Section 5 presents a

foresting exercise. Finally, Section 6 contains some concluding comments.

2. Seasonal models

Modelling the seasonal component in time series is a matter that still remains

controversial. Seasonal dummy variables have been employed for many years but this

type of (deterministic) seasonality has been found to be inappropriate in many cases,

especially if the seasonal component changes or evolves over time. On the other hand,

stochastic stationary seasonal models are usually based on seasonal AutoRegressive-

Moving Averages (ARMA) models of form:

...,,2,1t,)L(y)L( t
s

t
s =εθ=φ (1)

where yt is the time series we observe, )L( sφ  is the seasonal AR polynomial, where Ls

is the seasonal lag-operator (Lsyt = yt-s) and s is the number of time periods within a

year; )L( sθ  is the MA polynomial and et is white noise. In this approach, the roots of

the seasonal AR polynomial must be outside the unit circle. If they are in the unit circle,

the process contains seasonal unit roots, and seasonal first differences are required to

render the series stationary. In other words,

,...,2,1t,uy)L1( tt
s ==− (2)

where ut is I(0), (defined as a covariance stationary process with spectral density

function that is positive and finite at any frequency) and thus, it can be specified in

terms of a white noise or any type of weakly (seasonal/non-seasonal) autocorrelated

processes. However, the seasonal unit root model described in (2) is merely one of the
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many mathematical models that may be employed to describe the seasonal structure. In

fact, equation (2) can be extended to the case of:

,...,2,1t,uy)L1( tt
ds ==− (3)

where d can be any real value. In that case the process is said to be seasonally

fractionally integrated, and the polynomial in the left-hand-side of (3) can be expressed

in terms of its Binomial expansion such that, for all real d,
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Processes like (3), (with d > 0) belong to the class of seasonal long memory processes,

so-named because of the strong association (in the seasonal structure) between

observations widely separated in time. The notion of fractional integration with

seasonality was suggested by Jonas (1981), and extended in a Bayesian framework by

Carlin et al. (1985) and Carlin and Dempster (1989). Porter-Hudak (1990) used a

fractional model like (3) (with s = 4) to some quarterly US monetary aggregates, and

other empirical works in this context are Ray (1993), Sutcliffe (1994) and more

recently, Gil-Alana and Robinson (2001) and Gil-Alana (2002).

On the other hand, most of the literature on fractional integration has

concentrated on the long run or zero frequency (i.e., using a polynomial of form: (1-L)d

rather than (1-Ls)d), and it has been identified for several macroeconomic time series in

many papers. This finding is often explained using Robinson (1978) and Granger (1980)

aggregation results: cross section aggregation of a large number of AR(1) processes

with heterogeneous AR coefficients may create long memory at the zero frequency.

Parke (1999) uses a closely related discrete time error duration model, while Diebold

and Inoue (2001) relate fractional integration with regime switching models. Lildholdt
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(2002) provides both theoretical and Monte Carlo evidence that the three types of

explanations may also generate seasonal fractional integration of form as in (3).2

In this paper we examine the number of monthly arrivals in the Canary Islands

using different models for the seasonal structure investigating which is the best

approach in terms of their forecasting properties.

3. Empirical analysis

The data analysed in the paper refer to the number of tourist arrivals in the Canary

Islands for the time period 1992:01 to 2005:12. The data are monthly, seasonally

unadjusted, and are obtained from the National Airport Administration (AENA) at

airports from information regarding the number of tourist arrivals.3 In Figure 1 we

present the plots of the original series, its first seasonal differences, and the

correlograms and periodograms of these two series.

[Insert Figure 1 about here]

Starting with the original series we observe a clear seasonal pattern and this is

substantained by both the correlogram and the periodogram. Looking at the seasonally

differenced series, seasonality seems to be removed, though the correlogram still

presents some significant values at some lags suggesting that other degrees of

differentiation may be more appropriate than first differences.

In order to model and forecast the series, first we assume that the seasonal

component is deterministic, and consider the model,

,...,2,1t,uSty t
1s

1j
jtjt =+∑ γ+β+γ=

−

=
(4)

                                                
2 Lildholdt (2002) shows that fractional integration at the seasonal frequencies may be created by: a)
cross-sectional aggregation of seasonal data; b) aggregation of seasonal duration models, and c) regime-
switching if the underlying Markov process possesses seasonal dependencies.
3  Hoti et al. (2006) and Garin-Munoz (2006) also use the same data base.
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with s = 12, Sit refers to the seasonal (monthly) dummy variables, and ut is modelled as

a white noise process but also with autocorrelation through AR processes. We estimate

the model including only an intercept and with an intercept and a linear time trend. The

results are presented in Table 1.

[Insert Table 1 about here]

We estimate model (4), study the significance of the coefficients, and perform a

global significance test for the null hypothesis of no seasonality (all the γi-coefficients

equal to zero). As shown in Table 1, we can reject the null hypothesis of no seasonality

in all the four estimated models. We also present various selection criteria (AIC, SIC) in

order to select which of these models is preferable to explain the behaviour of the series.

Based on these criteria, we conclude that the model with an intercept and a linear time

trend and AR(1) ut is the preferable one.

 [Insert Figure 2 about here]

Figure 2 displays the time series evolution of the series for each month. A slight

changing pattern is observed in all cases, with the values increasing smoothly across

time, implying that the seasonal component of the series may be nontationary. Thus, as

a second approach, we consider the case of seasonal first differences and perform

various methods for testing such hypothesis. In particular, we use the procedure

developed by Dickey, Hasza and Fuller (DHF, 1984) and the extension of the tests of

Hylleberg, Engle, Granger and Yoo (HEGY, 1990) to the monthly case (Beaulieu and

Miron, 1993; Franses, 1991).4

The DHF test is basically an extension of the tests of Dickey and Fuller (1979)

to processes such as:

tt
s

s y)L1( ε=ρ− (5)
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where ?s = 1. The test is based on the auxiliary regression of form:

                              tstt
s yy)L1( ε+π=− − (6)

an the test statistic is the t-value corresponding to p in (6). Due to the nonstandard

asymptotic distributional properties of the t-values under the null, Ho: p = 0, DHF

(1984) provide the fractiles of simulated distributions which give us the critical values

to be applied when testing the null against the alternative H1: p < 0. In order to whiten

the errors in (6), the auxiliary regression may be augmented by lagged values of (1 - Ls)

yt, and with deterministic parts as an intercept or a linear trend, but unfortunately this

changes the distribution of the test statistic.5

[Insert Table 2 about here]

Table 2 displays the results based on the above approach. We observe that in all

except one case (white noise ut with an intercept) we find evidence of seasonal unit

roots. Using the tests developed by Beaulieu and Miron (1993) the conclusions were

practically the same as with the DHF test, and we found evidence of unit roots in

practically all cases.6

As a third alternative approach we suppose that the seasonal component may be

fractionally integrated and consider models of form as in (3). Here, we employ a

procedure suggested by Robinson (1994). (See, Gil-Alana, 2002 for an application of

this approach). His method consists of testing the null hypothesis:

oo ddH =: ,   (7)

for any real value do, in a model given by:

    ...,2,1,' =+= txzy ttt β ,    (8)

                                                                                                                                              
4 Other seasonal unit root tests are Ghysels et al. (1994), Canova and Hansen (1995) and Tam and
Reimsel (1997), the latter proposing a test for a unit root in the seasonal MA operator.
5  The critical values are tabulated in Franses and Hobijn (1997).
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and xt given by (3), i.e.,

,...,2,1,)1( 12 ==− tuxL tt
d    (9)

where yt is the observed time series; β = (β1, …, βk)T is a (kx1) vector of unknown

parameters; and zt is a (kx1) vector of deterministic regressors that may include, for

example, an intercept, (e.g., zt ≡ 1), or an intercept and a linear time trend, (in case of zt

= (1,t)T).  The functional form of the test statistic, (denoted by ),r̂  is described in

Appendix A.

Based on Ho (7), Robinson (1994) showed that under certain very mild regularity

conditions,

.)1,0(ˆ ∞→→ TasNr d (10)

Thus, an approximate 100α% level test of (7) will reject Ho against the alternative: Ha: d

> do (d < do) if r̂ > zα ( r̂ < -zα), where the probability that a standard normal variate

exceeds zα is α. He also showed the efficiency property of the test against local

departures from the null.

[Insert Table 3 about here]

The results displayed in Table 3 refer to the 95% confidence intervals of those

values of do where Ho cannot be rejected for the three cases of no regressors, an

intercept and an intercept with a linear trend. We also included seasonal dummies in the

deterministic component zt in (8) but they were found to be statistically insignificant in

practically all cases.7 We also display in the tables (in parenthesis within the brackets)

                                                                                                                                              
6  An advantage of the Beaulieu and Miron’s (1993) approach is that it permits us to test for seasonal unit
roots without maintaining that roots are present at all the frequencies. However, using this method, we
cannot reject that unit roots are present at all frequencies at the 5% significance level.
7 This may be a consequence of the interaction with the seasonal fractional polynomial given by equation

(9). Note that the model tt
d12

tjt
11

1j
jt ux)L1(;xSy =−+∑ γ+α=

=
can also be expressed as =− t

d12 y)L1(

∑ +γ+−α
=

11

1j
tjtjt

d12 uw1)L1( , where .jt
d12

jt S)L1(w −=
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the value of do producing the lowest statistic in absolute value. That value should be an

approximation to the maximum likelihood estimate.8 As in the previous cases we

assume that ut is white noise and AR(1). We see that the intervals are relatively large,

which may be a consequence of the small sample size used in this application. If ut is

white noise the values are all strictly above 0 and the unit root null hypotheses cannot

be rejected, which is consistent with the results above based on seasonal unit roots.

Moreover, the estimates substantially change depending on the inclusion of no

regressors, an intercept, and an intercept and a linear trend. If ut is modelled in terms of

an AR(1) process, the lowest statistics take place at do = 0.14 (no regressors); 0.18 (with

an intercept) and 0.22 (with a linear trend).

As an additional method, we also employ a simpler version of the tests of

Robinson (1994) where only the root at the zero frequency is taken into account. In

other words, we test the same model as before, i.e. the one given by equation (8), with

,...,2,1t,uy)L1( tt
d ==− (11)

assuming that the disturbances are white noise and a seasonal AR(1) process of form:

....,2,1t,uu t12tt =ε+ρ= − (12)

Then, the seasonal component is supposed to be stationary, and the nonstationarity

comes from the (fractionally-) differenced polynomial in (11) and/or the linear trend.

Here, the test statistic takes the same form as r̂  in the Appendix, with the only

difference that ,
2

sin2log)( j
j

λ
λψ =  and =tû  .)1(ˆ)1( t

od
t

od zLyL −−− β  The

results based on this approach are displayed in Table 4.

[Insert Table 4 about here]

                                                
8  Note that this method is based on the Whittle function, which is an approximation to the likelihood
function.
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We observe that if ut is white noise, the values of d range widely between 0.01

(with a linear time trend) and 0.79 (no regressors). However, if ut is seasonal AR, the

values are higher, and the lowest statistics are obtained at d = 0.33 (with no regressors);

0.43 (with an intercept), and 0.56 (with a linear trend).

The last two approaches to investigating the seasonal behaviour of the series

consist in testing parametric models for the series of interest, relying on the seasonal

implications of the estimated models. The advantage of this procedure is the precision

gained by providing all the information about the series through the parameter

estimates. A drawback is that these estimates are sensitive to the class of models

considered, and may be misleading because of misspecification. It is well known that

the issue of misspecification can never be settled conclusively in the case of parametric

(or even semiparametric) models. However, the problem can be partly addressed by

considering a larger class of models. Note that the model used in (9) is based on the

polynomial (1 - L12)d, which may be decomposed into (1 - L)d and S(L)d where S(L) =

(1 + L + … + L11). That implies that we are imposing the same degree of integration, d,

at the zero frequency ((1-L)) and at the seasonal ones (S(L)). In what follows, we

employ another version of the tests of Robinson (1994) that enables us to

simultaneously consider roots at zero and the seasonal frequencies.

For this purpose, let us consider again the model given by (8), with

....,,2,1,)1()1( 2121 ==−− tuxLL tt
dd   (13) 

with zt = (1,t)T. Thus, under the null hypotesis:

    ,),(),(: 2121 oooo ddddddH ≡=≡             (14)

the model becomes:

...,2,1t,xty t10t =+β+β= (15)

                     ....,,2,1,)1()1( 2121 ==−− tuxLL tt
odod              (16)
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where d1o and d2o are real values, and, if d1o = 0, the model reduces to the case

previously studied in Table 3, and if d2o = 0, the one presented in Table 4. As before,

we examine separately the cases of β0 = β1 = 0 a priori (i.e., with no regressors in the

undifferenced model (15)); β0 unknown and β1 = 0 (with an intercept); and β0 and β1

unknown (with an intercept and a linear time trend). The results of the estimated values

of d1o and d2o with their corresponding intervals are displayed in Table 5.

[Insert Table 5 about here]

We observe in Table 5 that if we do not include regressors or only an intercept is

included, the values of d1o and d2o are very similar in the two cases independently of the

use of white noise or seasonal AR(1) ut.9 It is around 0.40 for the long run or zero

frequency, and slightly above 0 for the seasonal polynomial (1-L12). Including a linear

time trend, the orders of integration are 0.13 and 0.02 in case of white noise

disturbances, and 0.14 and 0.04 with AR(1) ut.

4. Model selection

In Section 3 we have presented a variety of model specifications to describe the

seasonal structure of the series. In this section we choose a single model for each

specification according to various criteria. Starting with the deterministic approach, the

results in Table 1 suggests that the best model specification is:

t4t3t2t1t S5.134419S7.267538S1.22939S8.67115t3.68611605913y ++−++=

t10t9t8t7t6t5 S1.118581S7.16125S3.312894S5.86030S6.291705S7.279691 ++++−−
,uS9.67887 tt11 ++

.u661.0u t1tt ε+= − (DUM)

However, permitting a seasonal unit root, (Table 2) the best specification according to

the results based on Dickey, Hasza and Fuller’s (1984) tests seems to be:
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t1ttt12tt
12 u536.0uuy068361.05.230022y)L1( ε+=+−=− −− .10 (DHF)

The third approach uses seasonal fractional integration (Table 3), and based once

more on the significance of the coefficients, the selected model is:

.808.0

;)1(;72.2171261

1

17.012

ttt

tttt

uu

uxLxy

ε+=

=−+=

−
(SFI)

Similarly, using fractional integration exclusively at the long run or zero frequency, the

selected model is:

.u894.0u

;ux)L1(;x57.1825827y

t12tt

tt
56.0

tt
ε+=

=−+=

−
  (FI)

The final approach, based on the two fractional polynomials at zero and the seasonal

frequencies leads to the model:

t1tttt
06.01238.0
tt

u820.0u;ux)L1()L1(

;x89.2171514y

ε+==−−

+=

−
. (FSFI)

In the following section we examine the forecasting ability of the prescribed models

based on the last 24 out-of-sample observations. We denote each of the models as

follows: DUM refers to the model based on seasonal dummy variables; DHF, the one

obtained through the Dickey, Hasza and Fuller's (1982) procedure and based on

seasonal unit roots; SFI, the one based on seasonal fractional integration; FI, the one

using fractional integration at the zero frequency; and finally, FSFI, the combination of

the last two fractional processes, i.e., with roots at zero and the seasonal frequencies.

5. A forecasting exercise

In this section we compare the models presented in Section 4 in terms of their

forecasting performance. The accuracy of different forecasting methods is a topic of

                                                                                                                                              
9 Non-seasonal AR(1) ut were also tried here, and the results were fairly similar to those based on white
noise ut.



13

continuing interest and research.11 Standard measures of forecast accuracy are the

following: the mean absolute percentage error (MAPE), the mean-squared error (MSE),

the root-mean-squared error (RMSE), the root-mean-percentage-squared error (RMPSE)

and mean absolute deviation (MAD) (Witt and Witt, 1992). Let yt be the actual value in

period t; ft the forecast value in period t, and n the number of periods used in the

calculation. Then:

a) Mean absolute percentage error (MAPE):  
( )

;
/

n
yfy ttt∑ −

b) Mean squared error (MSE):
( )

n
fy tt∑ − 2

;

c) Root-mean-percentage-squared error (RMPSE):  
( )

;
/2

n
ffy ttt∑ −

d) Root-mean-squared error (RMSE): 
( )

;
2

n
fy tt∑ −

e) Mean absolute deviation (MAD): .
n

fy tt∑ −

The MAD measures the magnitude of the forecast errors. Its principal advantage

is the ease of interpretation though it ignores the importance of over- or under-

estimation. The second type of accuracy measure is based on the forecast error, which is

the difference between the observation, yt, and the forecast, ft. This category includes

MSE, RMSE and RMPSE. MSE is simply the average of squared errors for all

forecasts. It is suitable when more weight is to be given to big errors, but it has the

drawback of being overly sensitive to a single large error. Further, just like MAD, it is

not informative about whether a model is over- or under-estimating compared to the

true values. RMSE is the square root of MSE and is used to preserve units. RMSPE

                                                                                                                                              
10 This model is based on the lack of significance of the time trend and the non-zero AR(1) coefficient.
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differs from RMSE in that it evaluates the magnitude of the error by comparing it with

the average size of the variable of interest. The main limitation of all these statistics is

that they are absolute measures for a specific series, and hence do not allow

comparisons across different time series and for different time intervals. By contrast,

this is possible using a third type of accuracy measure, such as MAPE, which is based

on the relative or percentage error. This is particularly useful when the units of

measurement of y are relatively large. However, MAPE also fails to take over- or under-

estimation into consideration.

[Insert Table 6 about here]

The last 24 out-of-sample forecast errors for the five selected models of Section

4 are displayed in Table 6. We observe that in most cases, the model based on dummy

variables (DUM) produces the lowest values, followed by the FSFI model, that is, the

one with roots at both the zero and the seasonal frequencies. This model produces the

lowest forecast errors in 4 out of the 24 values and outperforms the other three based on

integer or fractional differentiation (DHF, SFI and FI) over all time horizons in all

cases.

[Insert Table 7 about here]

In Table 7 we display the values of the five forecasting criteria described above

for the five specifications of the seasonal case. The DUM model produces the lowest

values in all cases, again followed by the FSFI model.

The above measures used for comparing the relative forecasting performance of

our models are purely descriptive devices. There exist several statistical tests for

comparing different forecasting models. One of these tests, widely employed in the time

                                                                                                                                              
11  See Makridakis et al. (1998) for a study on the forecasting accuracy of major forecasting models, and
Makridakis and Hibon (2000) for a summary and review of forecasting competition.
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series literature, is the asymptotic test for a zero expected loss differential of Diebold

and Mariano (1995).12 The loss differential is defined as

),()( htjthtitt egegd −− −=

where )( htiteg −  is the loss function, and htite −  is the corresponding h-step ahead

forecast error for the model i, .ˆ htitthtit yye −− −=  Given a covariance stationary

sample realization {dt}t=T+h,…,T+n, the Diebold-Mariano statistic for the null hypothesis

of equal forecast accuracy (i.e., E(dt = 0)) is given by: 
)(ˆ dV

d
, where d is the sample

mean loss differential,  ∑
+−

=
+=

+=

nTt

hTt
td

hn
d ,

1
1

 and where )(ˆ dV  is a consistent estimate

of the asymptotic variance of ,d  which is computed as an unweighted sum of the

sample autocovariances, that is, ,ˆ2ˆ
1hn

1
)d(V̂

1h

1k
k0 








∑ γ+γ

+−
=

−

=
 where 

1
1ˆ

+−
=

hnkγ

∑ −−
+

++=
−

nT

khTt
ktt dddd ).()(  Harvey, Leybourne and Newbold (1997) note that the

Diebold-Mariano test statistic could be seriously over-sized as the prediction horizon, h,

increases, and therefore provide a modified Diebold-Mariano test statistic given by:

,
n

n/)1h(hh21n
DMDMM

−+−+
=−

where DM is the original Diebold-Mariano statistic. Harvey et al. (1997) and Clark and

McCracken (2001) show that this modified test statistic performs better than the DM

test statistic in finite samples, and also that the power of the test is improved when p-

values are computed with a Student t-distribution.

[Insert Table 8 about here]

                                                
12 An alternative approach is the bootstrap-based test of Ashley (1998), though this method is
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Using the M-DM test statistic, we further evaluate the relative forecast

performance of the different models by making pairwise comparisons. We focus on the

DUM and the FSFI models, and use the absolute and squared prediction errors in the

computations. The results are displayed in Table 8. We observe that the test statistic

rejects the null hypothesis that model DUM and model FSFI’s forecast performances

are equal in favour of the one-sided alternative that model DUM's performance is

superior at the 5% level for short horizons. However, increasing the time horizon, the

results cannot distinguish between one model or the other.

6. Conclusions

In this paper we have analyzed the number of tourist arrivals in the Canary Islands,

monthly, (seasonally unadjusted), for the time period 1992:01 - 2005:12. We use

different seasonal time series models and look at the forecasting ability of the proposed

models. The results show that a simple deterministic model based on seasonal dummy

variables with AR(1) disturbances produces the best results over short horizons,

outperforming other more complicated approaches based on seasonal fractional/integer

differentiation. However, increasing the time horizon, the results cannot distinguish

between the model with dummies and another one based on seasonal fractional

integration at zero and the seasonal frequencies. In fact, this latter model outperforms

those using single fractional polynomials either at zero or at the seasonal structure.

The fact that a simple deterministic model with an AR(1) structure for the

disturbance term is the best specification for this series may be explained by the nature

of the series of itself. Thus, the nonstationarity is described by a linear time trend, and

the significance of the seasonal dummy variables suggests that the monthly structure of

                                                                                                                                              
computationally more intensive.
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the series has not changed over time, while the AR(1) polynomial describes the short-

run dynamics of the series. It is also interesting to note that seasonal differencing, which

is a standard practice when dealing with seasonal data, is outperformed by the fractional

model, and that a larger model containing fractional orders of integration at zero and the

seasonal frequencies outperform other rival structures. Finally, the use of other

approaches like time-varying coefficient models (e.g., Osborn and Smith, 1989, etc.)

should also be taken into account.
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Appendix

The test statistic proposed by Robinson (1994) for testing Ho (7) in (3) and (8) is

derived from the Lagrange Multiplier (LM) principle, and takes the form:
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…, s < ∞ are the distinct poles of ρ(L).
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FIGURE 1

Original series and first seasonal differences with their corresponding correlograms
and periodograms
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The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.077 for
series of length considered here.
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FIGURE 2

Time series evolution for each of the months in the year
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TABLE 1

Estimation of a deterministic seasonal model
White noise AR(1)

An intercept A linear time
trend

An intercept A linear time
trend

1γ̂ -6493.5 69164.6* 66049.2** 67115.8**

2γ̂ -90292.2 -21512 -25592.8 -22939.1

3γ̂ 206676.1 268578.2** 263809.1** 267538.7**

4γ̂ 80189.8 135214** 130024** 134419.5**

5γ̂ -327202.2** -279056** -284409.1** -279691.7**

6γ̂ -332445.7** -291177.6** -296445** -291705.6**

7γ̂ 52089.5 86479.5** 81537.9* 86030.5**

8γ̂ 285765.7** 313277.8** 308893.3** 312894.3**

9γ̂ -4189.2 16444.8 12840.9 16125.7

10γ̂ 105069.5 118825.5** 116217.5** 118581.1**

11γ̂ 61154.7 68032.7* 66628.5** 67887.9**
Constant 2181952** 1604198** 2331406** 1605913**

Time trend 6878** 6861.3**
ρ̂ 0.965 0.611

Seasonality test 42.9219** 470.94** 963.2331** 855.28**
AIC -2212.5 -2023.8 -1989.7 -1975.6
SC -2230.8 -2043.7 -2009.5 -1996.9

2R 0.17 0.93 0.94 0.95
The table presents the estimated individual seasonal coefficients. * and ** represents significant
at 10% and 5% level. The seasonality statistic tests the null hypothesis of no seasonality. AIC,
SC and 2R  stands for Akaike, Schwartz and adjusted R2 criteria.
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TABLE 2

Dickey, Hasza and Fuller (DHF, 1984) tests

No regressors An intercept A linear time trend

White noise 8.32 -3.34** -2.57

AR (1) 3.94 -2.26 -1.85

** means that we can reject the null hypothesis of seasonal unit root at 5% level.
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TABLE 3

Estimation of d based on seasonally fractionally integrated models ((1-L12)d)

No regressors An intercept A linear time trend

White noise [0.05  (0.16)  1.10] [0.15  (0.63)  1.05] [0.08  (0.32)  1.02]

AR (1) [0.04  (0.14)  1.11] [-0.03  (0.18)  0.96] [-0.07  (0.22)  0.97]

TABLE 4

Estimation of d based on fractionally integrated models ((1-L)d)

No regressors An intercept A linear time trend

White noise [0.49  (0.63)  0.79] [0.38  (0.43)  0.52] [0.01  (0.13)  0.34]

Seasonal AR (1) [0.80  (0.90)  1.03] [0.52  (0.56)  0.63] [0.33  (0.43)  0.56]

TABLE 5

Estimation of d1 and d2 based on fractional models at 0 and seasonal frequencies

No regressors An intercept A linear time trend

d1 d2 d1 d2 d1 d2

White noise 0.40
(0.21, 0.59)

0.02
(-0.07,0.21)

0.40
(0.19, 0.59)

0.02
(-0.09, 0.18)

0.13
(0.01, 0.29)

0.02
(-0.08, 0.18)

Seasonal AR (1) 0.39
(0.14, 0.73)

0.03
(-0.10, 0.27)

0.38
(0.13, 0.73)

0.06
(-0.08, 0.20)

0.14
(-0.02, 0.30)

0.04
(-0.11, 0.24)
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TABLE 6

k-ahead forecasting errors according to the selected models

DUM DHF SFI FI FSFI

1 -0.0753572 0.5679770 0.4212977 0.7667203 0.4210427

2 0.0078927 0.5680356 0.4213547 0.7667912 0.4211010

3 -0.1607014 0.6967750 0.5500992 0.8955199 0.5498420

4 -0.0476954 0.6835207 0.5368472 0.8822667 0.5365892

5 -0.1658322 0.1581339 0.0114607 0.3568796 0.0112020

6 -0.1693482 0.1494642 0.0027920 0.3482093 0.0025319

7 -0.0887552 0.6146529 0.4679819 0.8133977 0.4677205

8 0.0812992 1.0184366 0.8717617 1.2171801 0.8715029

9 -0.1135775 0.5336560 0.3869775 0.7323985 0.3867212

10 0.0165474 0.7730988 0.6264197 0.9718409 0.6261632

11 -0.1218879 0.5908312 0.4441522 0.7895734 0.4438957

12 -0.0329659 0.6187227 0.4720475 0.8174660 0.4717882

13 -0.0612604 0.5727892 0.5177302 0.8631522 0.5174747

14 -0.1244034 0.4264552 0.3713940 0.7168181 0.3711402

15 -0.0529947 0.7951982 0.7401415 1.0855624 0.7398852

16 -0.2474060 0.4745267 0.4191720 0.7648919 0.4192152

17 -0.1484917 0.1661922 0.1111362 0.4565570 0.1108802

18 -0.1696712 0.1398587 0.084804 0.4302228 0.0845462

19 0.0171102 0.7112355 0.6561822 1.0015994 0.6559232

20 0.0779644 1.0058177 0.9507617 1.2961801 0.9505042

21 -0.0882520 0.5496975 0.4946382 0.8400586 0.4943819

22 0.0303140 0.7775802 0.7225210 1.0679409 0.7222642

23 -0.0762574 0.6271780 0.5721177 0.9175388 0.5718619

24 -0.0748194 0.5675847 0.5125287 0.8579467 0.5122699
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TABLE 7

Forecasting measures for the selected models

k = 6 DUM DHF SFI FI FSFI

MAPE (x1000) 0.0000427 0.0001813 0.0001219 0.0002616 0.0001218

MSE 0.01500 0.27421 0.15766 0.50079 0.15749

RMPSE 0.07733 0.36802 0.26946 0.52371 0.26931

RMSE 0.12248 0.52365 0.39707 0.70767 0.39686

MAD 0.10447 0.47065 0.32397 0.66939 0.32371

k = 12 DUM DHF SFI FI FSFI

MAPE (x1000) -0.0000300 0.0002167 0.0001599 0.0002935 0.0001598

MSE 0.01113 0.388955 0.24060 0.66004 0.24037

RMPSE 0.07542 0.40671 0.32137 0.58731 0.32120

RMSE 0.10552 0.62414 0.49051 0.81242 0.49028

MAD 0.09015 0.58110 0.43443 0.77985 0.43417

k = 18 DUM DHF SFI FI FSFI

MAPE (x1000) -0.0000381 0.0001984 0.0001533 0.0002880 0.0001532

MSE 0.01487 0.33829 0.22425 0.62979 0.22403

RMPSE 0.06568 0.43864 0.33288 0.60124 0.33270

RMSE 0.12195 0.58163 0.47355 0.79359 0.47332

MAD 0.10478 0.53046 0.41432 0.75974 0.41406

k = 24 DUM DHF SFI FI FSFI

MAPE (x1000) -0.0000305 0.0002108 0.0001721 0.0003038 0.0001720

MSE 0.01225 0.38454 0.28032 0.72682 0.28007

RMPSE 0.06823 0.43113 0.35931 0.63093 0.35913

RMSE 0.11071 0.62011 0.52945 0.85254 0.52922

MAD 0.09378 0.57447 0.47360 0.81903 0.47335



31

TABLE 8

Results based on the modified Diebold and Mariano (1995) statistic (M-DM, Harvey
et al., 1997) comparing the DUM and the FSFI models

h  =  1 h  =  2 h  =  4 h  =  8 h  =  16 h  =  20 h  =  22

Absolute
P.E.

-6.481
(0.000)

-5.778
(0.000)

-8.724
(0.000)

-11.124
(0.000)

-2.892
(0.020)

-1.4029
(0.233)

-3.455
(0.075)

Squared
P.E.

-5.518
(0.000)

-5.016
(0.000)

-7.362
(0.000)

-5.497
(0.000)

-6.686
(0.000)

-4.994
(0.008)

-4.104
(0.055)

p-values in parentheses.


