

ANALISIS Y PROCESAMIENTO DE DATOS ESPACIALES

PRESENTACIÓN

- Titulación: MÁSTER UNIVERSITARIO EN CIENCIA DE DATOS PARA CIENCIAS EXPERIMENTALES
- Módulo/Materia: Módulo III/Materia 3.1. Optativas
- **ECTS**: 3
- Curso, semestre: segundo
- Carácter: Optativa
- Profesorado (por concretar):
 - David Galicia, email: <u>dgalicia@unav.es</u> (responsable de asignatura)
 - Ibon Tamayo, email: itamayou@unav.es
- Idioma: Español. Se requieren conocimientos de inglés.
- Aula, Horario: Consultar calendario del máster.

RESULTADOS DEL APRENDIZAJE

RAO7 Integrar la información geoespacial con variables ambientales para abordar cuestiones relacionadas con la crisis de la biodiversidad en un escenario de cambio climático y desarrollo sostenible.

PROGRAMA

Sesiones teórico-prácticas

- 1. Sobre la información espacio-temporal
 - Fundamentos y tipos de datos.
 - Ámbito de aplicación.
 - Variables ambientales.
 - Remote sensing.
 - Fuentes de información espacial
 - Modelos de predicción: determinísticos, probabilísticos y sistemas expertos.
 - Validación de los modelos de predicción.
- 2. Programas para el análisis de los datos espaciales
 - Programas autónomos: ArcGIS, SAGA, GRASS, gstat, GoogleEarth.
 - Análisis espacial mediante R: librerías e interacción con programas externos.
 - Obtención de datos a través de servicios web: fuentes de datos adicionales, imágenes color real de Google Earth, servidores de imágenes satélite (Landstat, Meteosat, ENVISAT, NASA-MODIS)
- 3. Modelización de datos biológicos
 - Modelos de distribución de especies (SDM), modelos de nicho ecológico (ENM) y modelos de idoneidad de hábitat (HSM).
 - Sobre los datos biológicos: sesgos muestrales, tipos de datos, ausencias significativas, presencias indirectas, catálogos e inventarios, filtrado de datos por causas ecológicas (fenología, dispersión) ...

Facultad de Ciencias

- Variables predictoras: estandarización de la información, sistemas de proyección, resolución espacial, selección y autocorrelación ...
- Algoritmos de ajuste: regresión (GLM, GAM), aprendizaje automático (MaxEnt, Random forest, Gradient Boosting)
- Validación e interpretación: AUC, matriz de confusión (TSS), maximización de la sensibilidad (true positive rate, TPR) y la especificidad (true negative rate, TNR)
- Aplicación de escenarios a los modelos de predicción
- 4. Representación y publicación de la información espacial (ArcGis, RShiny)

ACTIVIDADES FORMATIVAS

1.-ACTIVIDADES PRESENCIALES (35 horas)

- Clase expositiva (20 horas)
- Seminarios o talleres (10 horas)
- Tutorías (2 horas)
- Evaluación (3 horas)

2.-ACTIVIDADES NO PRESENCIALES (40 horas)

- Estudio personal (20 horas)
- Resolución de trabajos (20 horas)

EVALUACIÓN

Superar la asignatura requiere obtener una calificación final igual o superior a 5.0 puntos sobre 10.

Convocatoria ordinaria

La calificación final de la asignatura tendrá en cuenta la actividad desarrollada por el alumno durante las sesiones teórico-prácticas, así como el desempeño en los trabajos personales o grupales planteados durante el curso. La evaluación de tareas y casos prácticos ponderará entre un 50-80% sobre la nota final. Al término de las sesiones se realizará una prueba práctica final que tendrá un peso de hasta un 50% sobre la calificación de la asignatura.

Convocatoria extraordinaria

En caso de no superar la convocatoria ordinaria, se convocará una nueva fecha para la realización de otra prueba práctica final. No se reevaluarán las tareas y casos prácticos realizados durante el curso.

HORARIOS DE ATENCIÓN

Los profesores de la asignatura estarán disponibles para la resolución de dudas, solicitando cita previa por correo electrónico:

David Galicia, email: <u>dgalicia@unav.es</u>

• Ibon Tamayo, email: itamayou@unav.es