Addressing Complex Sampling Designs in the
Development of Regression Models

Amaia lparragirre!, Irantzu Barrio'?, Inmaculada Arostegui-2

! University of the Basque Country (UPV/EHU)
2 BCAM-Basque Center for Applied Mathematics

i 1 DATAI
Universidad INSTITUTO DE CIENCIA DE LOS

NS de Navarra DATOS E INTELIGENCIA,ARTIFICIAL




@ Introduction
@ Methodological proposals
© Software development

@ Discussion and further research



Introduction Methodological proposals Software development Discussion and further research

@ Introduction



Introduction Methodological proposals Software development

Prediction
models

Complex Survey
Design Data

Discussion and further research

|1



Introduction

Prediction

models

Complex
Design

Survey
Data



Introduction Methodological proposals Software development Discussion and further research

Prediction models 1

Based on known past behavior...
what is most likely to happen in the future?

Purpose: To make future predictions by means of known past results.
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Purpose: To make future predictions by means of known past results.
Development of prediction models

Several steps should be considered in the development of prediction models
in order to end up with a valid model:

Estimation Missing values Validation

Variable selection Predictive performance

Existing techniques: data need to satisfy iid conditions
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Survey data 2

Sampling process

Population (U) Sample (S)
1 2
1 Information obtained from the population
2 Information obtained by the survey

(\_/

The goal is to make conclusions related to the ulation
base(?on the information obtained by means of%ﬂg survey

Prediction models
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One-stage stratified sampling

Population U (of size N):

H
U= Uy, each Uy of size Nj,, Vh e {1,..., H}.
h=1

Inclusion probabilities:

Np
Np’

T =

Sampling weights

1 N .
W,-z—z—h, Vi € Sp,
T np

Vie Uy, Vhe{l,...,H}.

Vhe{l,...,H}, S=Ul,S.
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Two-stage stratified cluster sampling

Population U (of size N):

H A,
U= U U Ub,o , €ach Uy of size Np o, Vhe {1,...,H},Va=1,... A,
h=1a=1
Inclusion probabilities:
an Nh, o

m= 2 Dhe i g Wa e {1, Ay, Yhe {1, HY.
Apn Npo '

Sampling weights

1 An Npg . .
wi=— =" 2% yic S, . Vo€ Ay, Ve {1,... H},

i ap  DNpa

where ¢ is the index of each selected cluster (grouped in the set Aj).
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Variable selection

Variable selection with LASSO regression for complex survey data
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Predictive performance

Estimation of the ROC curve and AUC with complex survey data



Introduction Methodological proposals Software development Discussion and further research

Basic notation |6

Y': dichotomous response variable

X =(1,X1,...,Xp): vector of covariates.

U: finite population of N units

S C U: sample of n observations, (y;,x;, w;),Vi € S
B = (Bo,B1,---,Bp)": model coefficients.

Focus: Logistic regression model

logit(p;) = In L fip} = Bo + Brxai + ... + BpXpi

where p; = p(x;) = P(Y = 1|X = x;).
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Basic notation

Y': dichotomous response variable

X =(1,X1,...,Xp): vector of covariates.

U: finite population of N units

S C U: sample of n observations, (y;,x;, w;),Vi € S
B = (Bo,B1,---,Bp)": model coefficients.

Focus: Logistic regression model

logit(p;) = In [1 P

1

:| :ﬁo+ﬂlxli+'~~+ﬂpxpi

where p; = p(x;) = P(Y = 1|X = x;).

Likelihood function

LB =TT o1 - py = B

i€eS

iscussion and further research
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Basic notation

Y': dichotomous response variable

X =(1,X1,...,Xp): vector of covariates.

U: finite population of N units

S C U: sample of n observations, (y;,x;, w;),Vi € S
B = (Bo,B1,---,Bp)": model coefficients.

Focus: Logistic regression model

logit(p;) = In L fip} = Bo + Brxai + ... + BpXpi

where p; = p(x;) = P(Y = 1|X = x;).
Pseudo-likelihood function (Binder, 1983)

PLB) =[] p™ (1 - p)t " =B

i€S

elopment Discussion and further research
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> LASSO regression models = Tuning parameter (\)
> Select A\ that minimizes the error: validation methods (train/test sets)
> Cross-validation (CV)
» PROBLEMS: sampling design is not considered

> Estimation of regression coefficients
> Validation techniques
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» Development of prediction models

> Variable selection

> LASSO regression models = Tuning parameter (\)

> Select A\ that minimizes the error: validation methods (train/test sets)
> Cross-validation (CV)

» PROBLEMS: sampling design is not considered

> Estimation of regression coefficients
> Validation techniques

» Complex survey data framework:

Validation techniques = Replicate weights methods

Replicate weights methods

Modify the sampling weights (w;) to define new subsamples that replicate
the original sample and properly represent the finite population.
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cross-validation (dCV).
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Goals

1 Analyze the performance of replicate weights methods to select .

2 Propose new methods based on replicate weights: design-based
cross-validation (dCV).

!

We compare the performance of the methods with respect to the
traditional cross-validation
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exiB
> Logistic regression model: p(x;) = 1L B

(B) =" lyiIn(p(x)) + (1 — i) In(L — p(x;))] = B

i€S

» For a given value of A, logistic LASSO regression models:

min {—w) +AY m}
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exiﬁ
> Logistic regression model: p(x;) = 1L B

(B) =" lyiIn(p(x)) + (1 — i) In(L — p(x;))] = B

i€S

» For a given value of A, logistic LASSO regression models:

min {—4(,3) +AY 5j|} — A7

j=1
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Unweighted cross-validation (unw-SRSCV) (K = 10)

> Define a grid for \: A\, VI =1,... L.
> K folds — St,(k), 5test(k)7 Vk=1,...,K
> Fit the model to the training set Si(x) considering \; = f)tlr(k)(~)

> Estimate the error in the test sets:

1

Ntest(k)

1
Errgy = Z L(yi, ﬁtlr(k)(x,-)) = Errcv()\/ % Z Err

iestest(k)

where: £(yi, Bley (x1)) = —yiIn(Bley (1)) — (1 = yi) In(1 = plgyy (x7)).
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Unweighted cross-validation (unw-SRSCV) (K = 10)

Define a grid for A: A, VI=1,..., L.
K folds — Str(k): Stest(k)7 Vk = 1,..., K
Fit the model to the training set Sy () considering \; = f)tlr(k)(~)

Estimate the error in the test sets:

1

Ntest(k)

1
Errgy = Z ll(y,-,[)t’,( y(xi)) = Errcv()\/ % Z Err

iestest(k)
where: L(yi, o (X)) = =i In(Brygu (x1)) — (1 = yi) In(1 = Bryguy (x:))-

Best value for A:

A = argmin {E\NCV(A/)}
A I=1,.0,L
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Unweighted cross-validation (unw-SRSCV) (K =

» Define a grid for \: A\, VI=1,...,L.
K folds = Su(k), Stest(k)s Vk=1,..., K (¥)

| 2
» Fit the model to the training set Sy, considering \; = f)t’r(k)(~) (*)
| 2

Estimate the error in the test sets: (*)

K
1 1
Err(k) - n Z L( Yvatr(k)(xl)) = EI’I’C\/()\/ = K Z
test(k) 1€ Sl
where:

L(yi, b’!r(k)(xi)) =i |”(f’t/r(k)(xi)) —(1—=y)In(1 - lA’tIr(k)(xi))-

» Best value for A:

A = argmin {E_;rcv(/\/)}
At I=1,.0,L

10)

k=1

Ny
(k)

7
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PROPOSAL: Sampling design should be considered.

» Fitting the models: = weighted cross-validation (w;, w-SRSCV)

P
min {pe(ﬂ) +AY Iﬂj},
j=1
where,

pl(B) =D wilyiIn(p(x;)) + (1 — yi) In(1 = p(x;))].

i€S
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min {—pe(ﬁ) +AY |ﬂj},
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where,
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PROPOSAL: Sampling design should be considered.

» Fitting the models: = weighted cross-validation (w;, w-SRSCV)

P
min {—Pé(ﬁ) +AY IBJ} :
j=1
where,
pl(B) =D w; lyiln(p(x:)) + (1 = i) In(L — p(x:))]
ieS
» Defining training and test sets = Replicate weights methods (w;")

» Estimating the error:

—~ 1 . .
Erry = = > w L{yis Blyuy(x1))-

. w:
Z’estest(kj I i€Stea(i)
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Replicate weights methods:

Existing methods

» Jackknife Repeated Replication » Design-based cross-validation
(JKn) (dCV)

» Rescaling Bootstrap » Split-sample Repeated
(Bootstrap) Replication (split)

» Balanced Repeated Replication » Extrapolation (extrap)

(BRR)
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Replicate weights methods:

Existing methods

» Jackknife Repeated Replication » Design-based cross-validation
(JKn) (dCV)
> >

> | 4
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Jackknife Repeated Replication (JKn)

(Test
S
o ® [ ) [ )
L ()
® o ®
(] o
° o o®
o
o o

Train
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Design-based cross-validation (dCV)

td
|.T:C/
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» Generate population covariates (x;) and design variables (z;) following
a multivariate normal distribution.

Pre-define B (some values = 0) = y; ~ Bernoulli(p(x;,z;)) = U
p = 50 covariates (x;) are considered to fit the models.
S1 (d = 0 cluster-level variables), S2 (d = 5).
H =5 strata, A, =20,Vh=1,..., H clusters
Sample (S):
> a,=4,Yh=1,...,H clusters
> npo units per cluster:

S1: (5,10, 25,50,500), S$2: (5,25,50,100,250) = w;

vvyvyyy
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T
Atrue

Tmin

Erie () soe Ertlo (A)) eoe Errfy, (A})

POPULATION
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For each method:

TRAINING
SETS
FIT

sr.lm

TRAINING ...
SETS
FIT

arlm ar.Lam

O N e MODELS Ty ) MoDELS  fui () fuir) )
TEST TEST
SETS SETS
TEST l TEST
[Erilt () BT (D) ERRORS | Erl () Bl (M)| ERRORs |Erri Brrii™ (X3
AVERAGE AVERAGE Form
Errllt(\)) TEST Erri (A TEST Erri (A7)
ERRORS ERRORS |
minl
am

test
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Simulation study
Differences between A parameters

S1 (d =0)

T

2 —= a_

JKn —
dCV -

(e}
W-SRSCV | 4
unw-SRSCV ¢- m 4o
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Simulation study

Number of variables

S1 (d =0)

T

T

50

T T T
(=] o o
@ N -

40 —

Sa|qelieA Jo JsquinN

ADSHS-mun

AJSHS—M

AOP

uMr

anJ
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Differences between A parameters

S2 (d = 5)
6_
4—

JKn —
dCV —
w-SRSCV -

|
unw-SRSCV - |- m -1
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Simulation study

Number of variables

S2 (d = 5)

T

T

T T
o o
(o) o

50
40

So|qeLIBA JO JaquinN

10

ADSHS-mun

AOSHS-M

NOP
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» Weights need to be incorporated to fit LASSO models.

» The greater the cluster-effects, the greater the difference between
dCV and w-SRSCV.

» Similar results for linear regression models.
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» Weights need to be incorporated to fit LASSO models.

» The greater the cluster-effects, the greater the difference between
dCV and w-SRSCV.

» Similar results for linear regression models.

Recommendation

The use of dCV is recommended: parsimonious models and the best
method in terms of computational efficiency.

Extended to elastic nets
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So : subset of units with Y = 0; S : subset of units with Y = 1.



Introduction Methodological proposals Software development Discussion and further research

Introduction

So : subset of units with Y = 0; S; : subset of units with Y = 1.

Area under the ROC curve (Aynw)
ROC() = {(1 = Sp(c), Se(c)), ¢ & (—00,0)} -

PO = = Y Mpo<c)  Se() = 3 I(py =)

io€So i1 €S



Methodological proposals

Introduction

So : subset of units with Y = 0; S; : subset of units with Y = 1.

Area under the ROC curve (Aynw)
ROC() = {(1 = Sp(c), Se(c)), ¢ & (—00,0)} -

Q)= Y Mpu<e) i Sele) = 3 My > o)

io€So i1 €S

Mann-Whitney U-statistic (Bamber, 1975)

1

ng - M

/munw -

Z Z [I(ﬁio < ﬁil) + 0.5/(,[3,'0 = ﬁh)]

io€So €St

-Aunw - A/U\Cunw
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So : subset of units with Y = 0; S; : subset of units with Y = 1.
Area under the ROC curve (A)
ROC,(-) = {(1 = Spu(c), Seu(c)), ¢ € (—00,00) } :

S, (c) = D ies, Wio - 1(Pip < ©)  Se(0)= Sies Wi (P, > ¢
" > ives, Wi S o w;
€5 "o €S I
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So : subset of units with Y = 0; S; : subset of units with Y = 1.

Area under the ROC curve (A)

ROC,(-) = {(1 = Spu(c), Seu(c)), ¢ € (—00,00) } :

Z’besﬂ Wiy I(ﬁiﬂ < C) N Zi1€51 Wi, - I(/A)h > C)

Sp = . Se,(c) =
pW(C) Zioeso Wi ¢ (C) Zilesl Wiy

Based on the Mann-Whitney U-statistic

= ZigGSg Zilesl wi,wi, [1(Pi, < Piy) + 0.5 I(piy = pi)]
AUC,, =
Zioeso Zilesl Wi, Wiy
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Proposal |22
So : subset of units with Y = 0; S; : subset of units with Y = 1.
Area under the ROC curve (A)
ROC,(-) = {(1 = Spu(c), Seu(c)), ¢ € (—00,00) } :

Zilesl Wi, - I(lah > C)
Zilesl Wi,

Zfoeso Wi, - I(ﬁio < C)

. Sew(c) =
Zioeso Wi "

Spul(c) =

Based on the Mann-Whitney U-statistic

Zos ZIOESO Zi1€51 Wi Wiy [/(bio < bil) +05- I(bio = f)h)]
AUC,, =
ZIOESO Zilesl Wiy Wiy

—

A= AUC,
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Introduction

Proposal
Q probabilities = Cut-off points: cg < cg-1 < ... < c1 < @
= Vqe{0,1,...,Q}, (1—S5p,(cp),Sewn(cqy)) = ROC,(")

(1,1) = (1= Spy (cq) , Sew (cq))

A
'T = -
(1= 8puleg-1), Sew (1)
_ _ -
(1= Spy (cq) s Sew(cq)) Potise
(1= Spu(eg1) » Sewlcg-1)
4
< 'o'
= %
s S
5} Q
n X
(1= Spu (1), Sew(er))
1 »
+—>
— 5
1—5Sp,(c)

(0,0) = (1 = Spy (co) , Sew(eo))
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Proposal Estimation of ROC and AUC |23

Q probabilities = Cut-off points: cg < cg-1 < ... < c1 < @
= Vqe{0,1,...,Q}, (1—S5p,(cp),Sewn(cqy)) = ROC,(")

f Ay = (1—Sp,(c1)) - Sew(ct)
A A 2
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Proposal Estimation of ROC and AUC |23

Q probabilities = Cut-off points: cg < cg-1 < ... < c1 < @
= Vqe{0,1,...,Q}, (1—S5p,(cp),Sewn(cqy)) = ROC,(")

\ . o (cq a e (1 o é;)w(cl)) . SAeW(Cl)
2
&
4, — (5Pulcg-1) = 5p(q)) - (Sew(cq) + Sew(cg-1))
-
2

O0=0-5ul Fuled 1 _ 7 (o)
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Proposal Estimation of ROC and AUC |23

Q probabilities = Cut-off points: cg < cg-1 < ... < c1 < @
= Vqe{0,1,...,Q}, (1—S5p,(cp),Sewn(cqy)) = ROC,(")

o Ay = [1—Sp,,(c1)] Sew(ct)
1 S / 1= 2

H ° Aq:[sApW(cqfl)fsApW(cq)]é[§ew<cq>+§ew(cq71)1

o — SPulcgo1) - [1+ Sew(cq-1)]
o=

0O=1 @S g ' ’
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Proposal Estimation of ROC and AUC |23

Q probabilities = Cut-off points: cg < cg-1 < ... < c1 < @
= Vqe{0,1,...,Q}, (1—S5p,(cp),Sewn(cqy)) = ROC,(")

A=A1+...+ Aqg

(1,1) = (1= Spy (cq) , Sew (cq))

Q
A= 2 Y [5bulca-1)8eu(cq)Sp(ca)Seu(q-1)]

q=1
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T~ ZIOESO Zilesl Wi Wiy [/(ﬁio < ﬁil) +05- I(ﬁio = :bh)]
AUC,, =
Zigeso Z;lesl Wiy Wiy
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f\ Zigeso Zilesl Wip Wi [/(IA)I'O < /3/'1) +05- /(ﬁio - ﬁil)]
uc, =
ZfOESO Zflesl WiO Wil
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I(ﬁl’o < ﬁl’l)

€Q €Q-1€Q-2--- Cq Cg—1 - -- @ ¢ G
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I(ﬁl’o < ﬁl’l)

€Q €Q-1€Q-2--- Cq Cg—1 - -- @ ¢ G
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Proposal Estimation of ROC and AUC |24

I(ﬁl’o < ﬁl’l)

|

h | | | | | | |

f i | f f f f i
|

€Q €Q-1€Q-2--- Cq Cg—1 - -- @ ¢ G
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I(ﬁl’o < ﬁil)

I | | | | | | |

F T T T T T T 1
|

CQ €Q—1€Q—2- - - Cq Cq,l v C c1 o))

I(Biy < Pi) =Y 1(Pio < cq) - U(Pi > cq) — I(Piy > cq-1)]
q=1
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I(ﬁio = /A)h)

CQ €Q—1€Q—2- - -
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I(ﬁio = /A)h)

€Q €Q-1€Q-2--- Cq Cg—1 - -- @ ¢ G
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I(ﬁio = /A)h)

I
r

€Q €Q-1€Q-2--- Cq Cg—1 - -- @ ¢ G
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Data generation
Step 1. Generate U with covariates following a normal distribution.
Step 2. Generate the response for a given 3 following Bernoulli's distribution.

Step 3. Define the sampling design:
> Strata
> Clusters within strata
Step 4. Sample the population and calculate the weights:

> One-stage stratified sampling (SH)

> Two-stage stratified cluster sampling (SC)
- 0 cluster-level variables (SC.0)
- 1 cluster-level variable (SC.1)

> Two sampling schemes: (a) and (b)
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Estimated ROC curves
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Differences between the estimated and true AUCs

Scenario SH (a) Scenario SC.1 (a)
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Same data: (1) fit the model, (2) estimate the AUC —> Optimism

» In line with traditional simple random sample (SRS) context
See, e.g: Austin and Steyerberg (2017), Iparragirre et al (2019).
» Recommendation in SRS: validation techniques
> split-sample validation
> Bootstrap
> cross-validation

» In general, in complex survey data context, to define training and test sets
> Validation techniques =—> Replicate weights

Goal

Analyze the performance of replicate weights methods for optimism correction of
the AUC.
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Rescaling Bootstrap (RB) (Rao and Wu, 1988)

Test Train

:/ . o il
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RBn: another variant in which the same number of units (one-stage) or
clusters (two-stage) are in both, training and test (original) set.
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Design-based cross-validation (dCV) (Iparragirre et al. (2023))
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Train Test

JKn: another variant in which each unit (one-stage) or cluster (two-stage)
is set as the test set once.
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» Population U is generated in the same way as in the previous
simulation study carried out for the estimation of the ROC curve.

» Sampling schemes: SH (one-stage), and SC.0, SC.1 (two-stage).
» Consider:

> RB, RBn: B = 200 resamples

> dCV: K = 10 folds, L = 20 replicates
» Simulation set-up: For r = 1,...,500:

> Obtain the sample S* o

Fit the model to S” (') and estimate its AUC: AUC,™.
Calculated the corrected AUCs : dCV.av, dCV.pool, JKn, RB, RBn

Extend ,[Ai’r to U: KIJ\C:rue

> For m € {app, dCV.av, dCV.pool, JKn, RB, RBn}:, AUCW’
. —r,m ——r

diff»" = AUC,, — AUC

true
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Simulation study
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Conclusions

» We propose unbiased design-based estimators for estimating the ROC
curve and AUC in the context of complex survey data.

» Replicate weights recommended for the optimism correction of the
AUC.
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Conclusions

» We propose unbiased design-based estimators for estimating the ROC
curve and AUC in the context of complex survey data.

» Replicate weights recommended for the optimism correction of the
AUC.

Further research

» Variance estimation and confidence intervals for the ROC curve and
AUC

» Extended simulation study to properly understand the behaviour of
each replicate weight methods under different scenarios for optimism
correction.
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Goal
Variable selection with complex survey data.

» Initially: LASSO regression models = Extended to: Elastic Nets

Available functions:

Function Brief description
replicate.weights()  Define training and test sets with replicate weights.
wlasso()  Fit LASSO models with complex survey data.
welnet ()  Fit elastic nets with complex survey data.
wlasso.plot()  Graphical visualization of the error.
welnet.plot()  Graphical visualization of the error.

ER https://github.com/aiparragirre/svyVarSel
O https://cran.r-project.org/web/packages/svyVarSel/

The Comprehensive R
Archive Networ
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svyVarSel: welnet()

Purpose

Fit elastic net models with complex survey data.

Formulation:

min {pﬂ(ﬂ) + A (az 18] + (1 a)25f> } = \?

Jj=1 Jj=1
Steps: For a grid of values for Ay, k € {1,...,K},
1 Define train and test sets
2 Fit the models in the train set
3 Estimate the error of the fitted model in the test set
Select: M\, € {)\1,..., g}, that minimizes the error

| 41
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Usage

mcv <- welnet(data = simdata_lasso_binomial,
col.y = "y", col.x = 1:50,
family = "binomial",
alpha = 0.5,
cluster = "cluster", strata = "strata", weights = "weights",
method = "dCV", k=10, R=20)

| 42
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Output

A list containing the following elements:

» lambda:
> grid: All the values in the grid {\1,..., A« }.
> min: The value of A\ € {\1,..., A} that minimizes the error.
» error:
> average: average error for each A\ € {A1,..., Ak}
> all: error for each Ax € {A1,..., Ak} in each test set.
» model:
> grid: all the coefficients of all the fitted models for {\1,..., Ax}.
> min: model coefficients considering the A\ that minimizes the error.
» data.rw:

> Data frame with the information of the training and test sets defined
with replicate weights.
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Usage and output

welnet.plot(mcv)
Variables in the selected model: 27
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Goal

Estimation of the ROC curve, AUC and optimal cut-off points with
complex survey data.

Available functions:

Function Brief description

wsp(), wse() Estimate the specificity and sensitivity parameters
wocp()  Estimate optimal cut-off points
wauc()  Estimate the AUC
corrected.wauc()  Corrected estimate of the AUC based on replicate weights
wroc()  Estimate the ROC curve
wroc.plot()  Plot the ROC curve

ER https://github.com/aiparragirre/svyR0OC
O https://cran.r-project.org/web/packages/svyROC/
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Usage

mycurve <— wroc(response.var = "y",
phat.var = "phat",
weights.var = "weights",

data = example_data_wroc,
tag.event = 1,
tag.nonevent = 0,
cutoff.method = "Youden")
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Output

A list containing the following elements:
» wroc.curve: list containing the following elements:
> Sew.values, Spw.values: all the values of the weighted estimate of
sensitivity and specificity across all the possible cut-off points.
> cutoffs: all the evaluated cut-off points.
» wauc: a numeric value indicating the area under the curve.
» optimal.cutoff: list containing the following elements:

> method: Youden, ROC01, MaxProdSpSe or MaxEfficiency
> cutoff.value: optimal cut-off point
> Spw, Sew: sensitivity and specificity estimates for the optimal cutoff

» Other basic information



svyROC: wroc.plot()

Usage and output

wroc.plot(x = mycurve,
print.auc = TRUE,

Software development

print.cutoff = TRUE)

ROCw Curve
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Usage

cor <- corrected.wauc(data = example_variables_wroc,
formula =y ~ x1 + x2 + x3 + x4 + x5 + x6,

tag.event = 1, tag.nonevent = 0,
weights.var = "weights", strata.var = "strata", cluster.var = "cluster",
method = "dCV", dCV.method = "pooling", k = 10, R = 20)

Output

A list containing:
» corrected.AUCw: the value of the corrected AUC.

» Other basic information
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New proposals improve the development of prediction models

» Variable selection based on elastic nets
> Design-based cross-validation
» Unbiased estimators for the ROC curve and AUC

> Optimism correction based on replicate weights

» Easy to apply: implemented in svyVarSel and svyROC
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New proposals improve the development of prediction models

» Variable selection based on elastic nets
> Design-based cross-validation
» Unbiased estimators for the ROC curve and AUC

> Optimism correction based on replicate weights

» Easy to apply: implemented in svyVarSel and svyROC

Further research

» Variable selection with Statistical Boosting for complex survey data.
» Variance estimation and confidence intervals for the ROC and AUC.

» Implement the proposals in svyVarSel and svyROC.
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