RNA-to-Image synthesis: generating synthetic digital pathology tiles based on NGS data using deep generative models

Francisco Carrillo-Perez, Ph.D. Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, School of Medicine.

Gevaert's Lab

Outline

- Introduction
 - Digital pathology
 - Next-Generation Sequencing (NGS) data
 - Variational Autoencoders (VAEs)
 - Generative Adversarial Networks (GANs)
 - Diffusion Models
- Text-to-image models
 - Recent advances in text-to-image
 - Can this be applied to biomedical data?
- Synthetic whole-slide image tile generation with gene expression profiles infused deep generative models
- Generation of synthetic whole-slide image tiles of tumours from RNA-sequencing data via cascaded diffusion models
- Future Directions

My background **m**Durance Stanford EVLBRIGHT-MEDICINE Universidad de Granada Universidad de Granada Universidad de Granada (March 2023-) (Sept 2018- July (Nov 2019- Jan (Sept 2021- Sep (Sept 2013-2019) 2023) 2022) Postdoctoral March 2018) Awarded one of Master in Data Ph.D. in Researcher Bachelor in Science and Machine the 18 (remotely) Computer predoctoral Computer Learning Science Engineering / applied to Fulbright Data Scientist Bioinformatics scholarships in Spain

Introduction

Digital pathology

Digital pathology is a sub-field of pathology that focuses on data management based on information generated from digitized specimen slides.

Next-generation sequencing data

Cancer tissue stained with hematoxylin & eosin (H&E) stain

HTTPS://FOCUSONTOXPATH.COM/WP-CONTENT/UPLOADS/TOXICOLOGIC-PATHOLOGY-TISSUE-SLIDE.JPG

RNA-Seq sequencing

Variational Autoencoders (VAEs)

Bibliography: Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*.

Generative Adversarial Networks (GANs)

Bibliography: Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial networks. *Communications of the ACM*, *63*(11), 139-144.

Diffusion models

Bibliography: Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, *33*, 6840-6851.

Diffusion models

Text-to-image models

Recent advances in text-to-image

DALLE-3 (Open Al)

Midjourney (Midjourney)

Imagen (Google)

Stable Diffusion 3 (Stability Al)

Many more...

How do they work?

Can this be applied to biomedical data?

It is known that gene expression has an effect on tissue morphology (Fu et al. 2020;Schmauch et al. (2020); Zheng et al. (2023)). Tissue tiles (Formalin-Fixed Paraffin-Embedded (FFPE) tissue specimens) are routinely obtained, and a single bulk RNA-Seq expression is obtained for the whole FFPE

Cell Reports Methods

Volume 3, Issue 8, 28 August 2023, 100534

Article

Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models

Francisco Carrillo-Perez¹², Marija Pizurica¹³, Michael G. Ozawa⁴, Hannes Vogel⁴, Robert B. West⁴, Christina S. Kong⁴, Luis Javier Herrera², Jeanne Shen⁴, Olivier Gevaert¹⁵⁶ A 🖂

Motivation and objectives

Motivation:

- Several works presented single-modality generative models (Quiros et al. 2019; Marouf et. al. 2020)
- Not all datasets have both modalities, or have a scarce number of samples

Objectives: Create an RNA-to-image synthesis model to fight data scarcity on healthy tissues using GANs

- Obtain a informative latent representation of the RNA-Seq using a VAE
- Generate high-quality tissue tiles an RNA-informed GAN and a traditional GAN
- Compare the quality of tiles between using an RNA-informed GAN and a traditional GAN

Data acquisition

- RNA-Seq (more than 60,000 genes) and WSI obtained from The Genotype-Tissue Expression (GTEx) project
- 246 samples of brain cortex, 562 samples of lung tissue, 328 samples of pancreas tissue, 356 samples of stomach tissue, and 226 samples of liver tissue
- Lung and brain cortex tissue used from the GEO serie 120795 for generalization capabilities

- We focused on generating two tissues: lung and brain cortex.

Methodology: VAE

Methodology: GAN

Methodology: RNA-GAN

Results: VAE

UMAP projection latent representation lung and brain cortex

Results: VAE

LUNG Shifted Lung Tissue • 20 AREA Shifted Brain -0 10 15 Brain Real Lung **Generated Brain** Real Brain Liver 8 10 Lung Pancreas **689** 6 Stomach 5 1 4 0 BRAIN AREA 2 -5 0 -10 1 05. -2 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 -1010 20 0

Transforming real samples of one tissue to another

UMAP latent representation multi-tissue RNA-Seq data

Results: GAN

GAN Brain

GAN Lung

Results: RNA-GAN

RNA-GAN Brain

RNA-GAN Lung

Results: Training time comparison

Epoch 24/39

GAN Brain

GAN Lung

Epoch 24/24

RNA-GAN Brain

Epoch 11/11

RNA-GAN Lung

Results: Self-supervised learning

 We pre-trained a ResNet-18 with simCLR using only synthetic tiles, and compare the performance with a model trained from scratch.

Results: Pathologists evaluation

You can play!

Quiz: https://rna-gan.stanford.edu/

Conclusions

- RNA-GAN produces more realistic samples and trains faster than a traditional GAN approach
- It can be used for imputing missing FFPE tiles, in those datasets with only RNA-Seq available
- However, tissue quality can be improved. Another drawback is that a different model needs to be trained per tissue.
- The code and models are available at: https://github.com/gevaertlab/RNA-GAN

nature > nature biomedical engineering > articles > article

Article | Published: 21 March 2024

Generation of synthetic whole-slide image tiles of tumours from RNA-sequencing data via cascaded diffusion models

Francisco Carrillo-Perez, Marija Pizurica, Yuanning Zheng, Tarak Nath Nandi, Ravi Madduri, Jeanne Shen & Olivier Gevaert

Nature Biomedical Engineering (2024) Cite this article

Motivation and objectives

Motivation:

- In recent years text-to-image models have been presented based on diffusion models (Saharia et. al. 2022; Ramesh et. al. 2022)
- GANs can be used for RNA-to-image generation, but they have multiple drawbacks

Objectives: Create a multi-cancer RNA-to-Image model that preserve cancer-specific characteristics

- Use a single architecture to generate tiles from 5 different cancer types
- Test that cancer-specific characteristics are preserved, by using cell counts (which cell types are found in the tiles) and cell proliferation based on deconvolved RNA-Seq
- The synthetic tiles can substitute real data to pre-train machine learning models

Data acquisition

	Project Code	Cancer Type	Number of samples
	TCGA-LUAD	Lung Adenocarcinoma	520
_	TCGA-KIRP	Kidney renal papillary cell carcinoma	298
	TCGA-COAD	Colon adenocarcinoma	289
	TCGA-CESC	Cervical squamous cell carcinoma and endocervical adenocarcinoma	277
	TCGA-GBM	Glioblastoma multiforme	212
	TCGA-PAAD	Pancreatic adenocarcinoma	202
_	TCGA-ESCA	Esophageal carcinoma	156
	TCGA-OV	Ovarian serous cystadenocarcinoma	83
	TCGA-UVM	Uveal Melanoma	80
	TCGA-CHOL	Cholangiocarcinoma	36

Data acquisition

- For further experiments, bulk RNA-Seq was deconvolved using CIBERSORTx (Newmann et al. 2015; Newman et al. 2019) into four cell-types: epithelial, endothelial, fibroblast, and haematopoietic.
- Two series were downloaded from GEO for generalization experiments: GSM1228184 (Kim et al. 2014) , and GSE226069 (Quintana et al. 2021)

Methodology: VAE

Methodology: RNA-CDM

Results: Tile generation

TCGA-COAD

synthetic

real

Results: Tile generation

TCGA-LUAD

synthetic

real

Results: Tile generation **TCGA-KIRP**

Lung cancer patient H&E tiles generated from RNA-Seq

real

Results: Model size matters

Results: Cell distribution using Hovernet

We generated 50.000 synthetic tiles and obtained the same amount of real tiles (10.000 per cancer type) We ran HoverNet (cell identification and segmentation model) over the real and synthetic tiles.

We computed the percentage per cell within each tile, and compare the cell distribution. Tumor 👥 Lymphocytes 🔂 Connective 🔂 Dead 📒 Normal 📰 Unclassifiable

TCGA-LUAD

TCGA-KIRP

Results: Cell distribution using Hovernet

	Tile type	Tumour	Lymphocytes	Connective	Dead	Normal
TCGA-COAD	Real	47.44±43.12	7.69±20.43	10.48±24.58	4.21±14.66	3.94±14.51
	Synthetic	61.78±42.43	6.11±17.88	2.69±13.27	1.33±7.36	6.87±17.89
TCGA-GBM	Real	22.57±25.83	17.66±20.25	18.54±21.74	26.20±26.20	12.5±21.34
	Synthetic	9.18±16.15	35.09±24.89	17.11±20.33	22.89±24.57	11.99±19.76
	Real	37.40±32.49	8.12±11.72	15.36±19.22	35.15±28.07	3.95±9.78
TCGA-LOAD	Synthetic	27.74±28.62	12.93±15.15	11.00±15.19	41.30±28.98	3.31±9.86
TCGA-KIRP	Real	48.14±33.02	7.39±12.11	12.57±21.83	19.20±21.75	10.37±18.35
	Synthetic	40.85±32.25	12.92±17.84	8.17±17.38	20.59±23.95	12.34±21.84
TOCALOESO	Real	45.52±43.65	13.61±27.54	5.34±17.52	4.59±15.31	2.85±10.87
	Synthetic	45.82±42.78	15.48±28.17	1.52±10.29	1.70 ± 7.74	7.89±19.97

Results: Differences in tiles between bulk and deconvolved

If we generate synthetic tiles using the haematopoietic deconvolved RNA-Seq, we find more lymphocytes in the tiles

10

15

20

-20

-15

-10

Results: Synthetic data can substitute real data

Results: Synthetic data can be used to pretrain ML models

Results: Microsatellite instability status prediction

Results: Prognosis prediction in pediatric gliomas

- We compared the performance of our pre-trained model on synthetic data for prognosis prediction in pediatric gliomas.
- The model outperformed those results obtained in literature, while also reducing the overfitting.

	Train CS (mean ± std)	Val CS (mean ± std)	Test CS
Steyaert et al.	0.900 ± 0.010	0.792 ± 0.070	0.854
Ours	0.806 ± 0.029	0.805 ± 0.058	0.871

Conclusions

- RNA-CDM, with a single architecture, produces realistic FFPE tiles from five different cancer types
- The cell fraction proportions are preserved in the synthetic tiles. In addition, higher fraction of specific cell types affect the synthetic tissue generated
- The synthetic tiles do not damage the performance of machine learning models, and can be used as pretraining to improve the classification metrics
- We released 1 million synthetic tiles (QR code)
- The code is available under academic-use license only at https://rna-cdm.stanford.edu

Future directions

Future directions: Synthetic multi-modal modelling

Thanks to my collaborators!

Thanks for your attention!

Any questions?

Email: fcperez@stanford.edu ORCID: 0000-0003-0974-4092 Webpage: https://pacocp.es/ Twitter: @pacocp9 Github: @pacocp