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Introduction




Digital pathology

Digital pathology is a sub-field of
pathology that focuses on data
management based on information
generated from digitized specimen
slides.
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Next-generation sequencing data
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Variational Autoencoders (VAEs)
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Generative Adversarial Networks (GANs)
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Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial
networks. Communications of the ACM, 63(11), 139-144.



Diffusion models

Q(Xt|Xt—1)
% ies @_>..._>@_>

~

~tm—-

K. -
o &

Bibliography: Ho, J., Jain, A., & Abbeel, P. (2020). Denoising
diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33, 6840-6851.




Diffusion models
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Text-to-image models




Recent advances in text-to-image
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How do they work?

Text prompt

“A painting of the Stanford
Hoover Tower in the style of ——
Monet”
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Can this be applied to biomedical data’

It is known that gene expression has an effect on tissue morphology ( Fu et al.
2020;Schmauch et al. (2020); Zheng et al. (2023)). Tissue tiles (Formalin-Fixed
Paraffin-Embedded (FFPE) tissue specimens) are routinely obtained, and a
single bulk RNA-Seq expression is obtained for the whole FFPE

RNA-Seq

[0.64,0.75,0.25,0.80,..0.93] | RNA_CD M
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Mativation and objectives

Motivation:

- Several works presented single-modality generative models (Quiros et al. 2019;

Marouf et. al. 2020)
- Not all datasets have both modalities, or have a scarce number of samples

Objectives: Create an RNA-to-image synthesis model to fight data scarcity on
healthy tissues using GANs

- Obtain a informative latent representation of the RNA-Seq using a VAE

- Generate high-quality tissue tiles an RNA-informed GAN and a traditional GAN

- Compare the quality of tiles between using an RNA-informed GAN and a traditional
GAN



Data acquisition

- RNA-Seq (more than 60,000 genes) and WSI obtained from The Genotype-Tissue
Expression (GTEX) project

- 246 samples of brain cortex, 562 samples of lung tissue, 328 samples of pancreas
tissue, 356 samples of stomach tissue, and 226 samples of liver tissue

- Lung and brain cortex tissue used from the GEO serie 120795 for generalization
capabilities

- We focused on generating two tissues: lung and brain cortex.



Methodology: VAE

RNA-seq data Latent space Reconstruction
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Methodology: GAN
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Methodology: RNA-GAN
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Results: VAE

UMAP projection latent representation lung and brain cortex

VAE Reconstruction Lung

10 VAE Reconstruction Brain
Reconstruction Lung Real
e . 8 Brain Real

Brain Generated
Lung Generated

o <] =50 =2.5 0.0 25 5.0 7.5 10.0 12.5



Results: VAE

Transforming real samples of one tissue to another UMAP latent representation multi-tissue RNA-Seq data
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Results: GAN




Results: RNA-GAN
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esults: Training time comparison
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Results: Self-supervised
e a l’n I n g A TCGA-GBM vs TCGA-LUAD 5-Fold CV TCGA-GBM vs TCGA-LUAD 5-Fold CV

- We pre-trained a
ResNet-18 with simCLR i~ . Ems DO
using only synthetic
tiles, and compare the
performance with a — - - —
model trained from B
scratch.




Results: Pathologists evaluation
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YD U [ a n p ‘ ay’l RNA-GAN synthetic tissue quiz!

Question 1 of 20
Is the tissue fake or real?
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Quiz:
https://rna-gan.stanford.edu/ -



Conclusions

- RNA-GAN produces more realistic samples and trains faster than a
traditional GAN approach

- It can be used for imputing missing FFPE tiles, in those datasets with only
RNA-Seq available

- However, tissue quality can be improved. Another drawback is that a
different model needs to be trained per tissue.

- The code and models are available at:
https://github.com/gevaertlab/RNA-GAN



nature > nature biomedical engineering > articles > article

Article | Published: 21 March 2024

Generation of synthetic whole-slide image tiles of
tumours from RNA-sequencing data via cascaded
diffusion models

Francisco Carrillo-Perez, Marija Pizurica, Yuanning Zheng, Tarak Nath Nandi, Ravi Madduri, Jeanne

Shen & Olivier Gevaert &3

Nature Biomedical Engineering (2024) | Cite this article




Mativation and objectives

Motivation:

- Inrecent years text-to-image models have been presented based on diffusion

models (Saharia et. al. 2022; Ramesh et. al. 2022)
- GANSs can be used for RNA-to-image generation, but they have multiple drawbacks

Objectives: Create a multi-cancer RNA-to-Image model that preserve
cancer-specific characteristics

- Use a single architecture to generate tiles from 5 different cancer types
- Test that cancer-specific characteristics are preserved, by using cell counts (which
cell types are found in the tiles) and cell proliferation based on deconvolved

RNA-Seq
- The synthetic tiles can substitute real data to pre-train machine learning models



Data acquisition

Project Code Cancer Type Number of samples
TCGA-LUAD Lung Adenocarcinoma 520
TCGA-KIRP Kidney renal papillary cell carcinoma 298
TCGA-COAD Colon adenocarcinoma 289
TCGA-CESC Cervical squamous cell carcinoma and 277
endocervical adenocarcinoma

TCGA-GBM Glioblastoma multiforme 212
TCGA-PAAD Pancreatic adenocarcinoma 202
TCGA-ESCA Esophageal carcinoma 156
TCGA-OV Ovarian serous cystadenocarcinoma 83
TCGA-UVM Uveal Melanoma 80
TCGA-CHOL Cholangiocarcinoma 36




Data acquisition

For further experiments, bulk RNA-Seq was deconvolved using
CIBERSORTx (Newmann et al. 2015; Newman et al. 2019) into four
cell-types: epithelial, endothelial, fibroblast, and haematopoietic.

Two series were downloaded from GEO for generalization experiments:
GSM1228184 (Kim et al. 2014) , and GSE226069 (Quintana et al. 2021)



Methodology: VAE

RNA-seq data Latent space Reconstruction
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Methodology: RNA-CDM

Real images

RNA-to-image Diffusion model (DDPM)
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esults: Tile generation

TCGA-CESC
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esults: Tile generation
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Colorectal cancer patient H&E tiles generated from RNA-Seq
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Results: Model size matters

- 500,000 parameters
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Qesu |tS [e | dlS[“bUth n -Tuinor-Lymphocytes-Connective Dead [l Normal [l Unciassifiable
Ising Hovernet

We generated 50.000 synthetic tiles

and obtained the same amount of real
tiles (10.000 per cancer type) :
We ran HoverNet (cell identification H
and segmentation model) over the real " " &%
and synthetic tiles. TCGAKIRP
We computed the percentage per cell § 9
within each tile, and compare the cell
distribution.




Results

- Cell distri

bution using Hovernet

Tile type Tumour Lymphocytes Connective Dead Normal

Real 47.44+4312 7.69+20.43 10.48+24.58 4.21+14.66 3.94+14.51
TCGA-COAD

Synthetic 61.78+42.43 6.11+17.88 2.69+13.27 1.33+7.36 6.87+17.89

Real 22.57+25.83 17.66 +20.25 18.54+21.74 26.20+26.20 12.5+21.34
TCGA-GBM

Synthetic 9.18+16.15 35.09+24.89 1711+ 20.33 22.89+24.57 11.99+19.76

Real 37.40+32.49 8.12+11.72 15.36+19.22 35.15+28.07 3.95+9.78
TCGA-LUAD

Synthetic 27.74+28.62 12.93+15.15 11.00+15.19 41.30+28.98 3.31+9.86

Real 48.14+33.02 7.39+12.11 12.67+21.83 19.20+21.75 10.37+18.35
TCGA-KIRP

Synthetic 40.85+32.25 12.92+17.84 8.17+17.38 20.59+23.95 12.34+21.84

Real 4552+43.65 13.61+27.54 5.34+17.52 4.59+15.31 2.85+10.87
TCGA-CESC

Synthetic 45.82+42.78 15.48 +28.17 1.52+10.29 1.70+7.74 7.89+19.97



ulk and deconvolved

If we generate synthetic tiles
using the haematopoietic
deconvolved RNA-Seq, we find
more lymphocytes in the tiles

Results: Differences in tiles between
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Results: Synthetic data can substitute real data
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Results: Synthetic data can be used to pretrain ML models

o Pretraining accuracy 5-fold CV " Pretraining F1-Score 5-fold CV
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Accuracy

Results: Microsatellite instability

Accuracy 5-fold CV
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Results: Prognosis prediction in pediatric gliomas

- We compared the performance of our pre-trained model on
synthetic data for prognosis prediction in pediatric gliomas.

- The model outperformed those results obtained in literature, while
also reducing the overfitting.

Train CS (mean  std) Val CS (mean % std) Test CS
Steyaert et al. 0.900 + 0.010 0.792 + 0.070 0.854

Ours 0.806 + 0.029 0.805 + 0.058 0.871



Conclusions

- RNA-CDM, with a single architecture, produces realistic FFPE tiles from five
different cancer types

- The cell fraction proportions are preserved in the synthetic tiles. In addition,
higher fraction of specific cell types affect the synthetic tissue generated

- The synthetic tiles do not damage the performance of machine learning
models, and can be used as pretraining to improve the classification metrics

- We released 1 million synthetic tiles (QR code)

- The code is available under academic-use license only at
https://rna-cdm.stanford.edu




Future directions




Future directions: Synthetic multi-modal modelling

Hypothesis testing ---> modify and use
as input to model

---2 impute/generate
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