Resumen:
As a natural resource, an efficient use of wood should be also a requirement for structural timber design, but the usual structural solid sections do not achieve the required optimal behaviour. The performance of the structural elements (serviceability and strength) depends not only on the material properties, but mainly on the moment of inertia of the cross section. The Timber Construction Institute of Technische Universität Dresden has developed a process for the manufacture of structural wood profiles. The resulting profiles combine economy, an efficient use of the material and optimal structural performance. They are externally reinforced with composite fibres, which improve the mechanical characteristics of the wood and protect it from weathering. The available experimental tests to axial loading show the outstanding properties of this new technology. Herein, the preliminary model developed to obtain the axial strength of longitudinally compressed tubes is presented. Two different analytical algorithms are discussed and applied. The model adequately predicts the axial strength of fibre reinforced wood profiles. The analytical results are within an error less than 10% to the available experimental results, with a mean error ratio less than 3%.